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QUALITATIVE MATRICES:
STRONG SIGN-SOLVABILITY AND WEAK SATISFIABILITY

VICTOR KLEE and RICHARD LADNER

Introduction

The study of "qualitative" linear systems was suggested by Paul

Samuelson in 1947 in his influential book on Foundations of Economic

Analysis [29]. Since then it has been carried on by economists, mathe-
maticians, ecologists and chemists, with emphasis on questions of quali-
tative solvability and qualitative stability. Survey articles have been
written, and references collected, by Maybee and Quirk [24], Maybee [23]
and Quirk [28]. The present paper is devoted to a rather general form
of qualitative solvability, of which strong sign-solvability is a spe-
cial case, and to a closely related notion, weak satisfiability, from

propositional logic.

The simplest qualitative conditions are those involving sign-patterns.

For a (real) m x n matrix A = (aij

consisting of all matrices that have the same sign-pattern as A . Thus

a matrix B = (b ,.) belongs to Q(A) if and only if B is an m X n

13
matrix with sgn bij = sgn ‘ij for all 4 and j . Here sgnT 18 -,
0 or + according to whether the real number T is <0, =0, or >0 .
Points of R" are taken as column matrices unless the contrary 1is
specified. For c ¢ " » (Atc) will denote the linear system whose coef-

ficient matrix 1s A and "constants column" {s ¢ . The system (A:c)

is said to be sign-solvable if A 4is square, the system is solvable, and

) , let Q(A) denote the convex cone
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both its solvability and the sign-pattern of its sclution depend only on
the sign-patterns of A and c¢ . That is, there exists x with Ax = ¢
such that for each B ¢ Q(A) and de&Q(c) 1t is true that (1) there
exists y with By = d and (i11) for each such y , Q(y) = Q(x) . The
system (A:c) 1s strongly sign-solvable if there exists x as described
with all coordinates of x different from O .

As 1s shown in Section 1, the study of strong sign-solvability is
easily reduced to the study of what we call S-matrices. An S-matrix is
an mXx (m+ 1) matrix A such that for each B ¢ Q(A) and x ¢ R’M’l
with Bx = 0, all coordinates of x are of the same sign; equivalently,
each such B has as its nullspace a line that intersects the open posi-
tive orthant of Rm+1 . In 1962 Lancaster [18] suggested a general form
for S-matrices; more inclusive forms were then described by Gorman [12]
and Lancaster [19]. In 1965 Lancaster {20] initiated the algorithmic
approach to S-matrices, based on duality properties of convex cones. Two
central problems have been those of finding:

(a) a small collection of "standard forms'" of S-matrices to which

a;l such matrices can be reduced by certain elementary trans-
formations;

(b) a fast algorithm for the recognition of S-matrices.

(The algorithms of Lancaster [20, 21] are of exponential complexity.)
It 1s not clear to us that one should expect a truly useful solution

of (a). 1In any case, Section 2 describes some ways of comstructing S-

matrices and the closely related NW-matrices. A conjecture of Corman [12]

4is elucidated but not settled.

O ———
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In Section 4 the goal (b) is attained by reducing the S-matrix recog-
nition problem to a sequence of mz + 2m + 2 1linear feasibility tests.
For the recognition of S-matrices, per se, it is probably more efficient
to use the graph-theoretic characterization of sign-solvability established
by Bassett, Maybee and Quirk [2] and discussed further by Maybee [22, 23].
However, our method goes considerably beyond the case of S-matrices, apply-
ing whenever the columns of the m x (m + 1) matrix A are restricted
only by membership in given polyhedral cones. If the feasibility tests are
made by means of the recent Shor-Khachian method [15, 31], the worst-case

complexity of our algorithm is bounded by a polynomial in the length of the

binary encoding of the description of the cones. Though the Shor-Khachian
procedure is not well-guited to actual computation (see the comments in Sec-

tion 4), this result is of theoretical interest because the S-matrix recog- J

nition problem is in a sense close to the boundary of NP-completeness.

In the language of propositional logic, recognizing that a given
m % (m+ 1) matrix is not an S-matrix amounts to recognizing that an asso-
ciated Boolean formula, consisting of the conjunction of n+ 1 disjunctive

clauses in n propositional variables, is weakly satisfiable. Although

this problem can be solved in polynomial time, we show in Section 3 that for
each k > 0 the problem of recognizing the weak satisfiability of n + [pllﬁj
clauses in n variables in NP-complete.

The section headings are as follows: §1. Strong sign-solvability,

S-matrices and weak satisfiability; §2. Constructions of NW-matrices;
§3. The recognition of weak satisfiability; $4. The recognition of S-

matrices; §5. Open problems. !
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1. Strong Sign-solvability, S-matrices and Weak Satisfiability

The fecllowing remark is straightforward.

THEOREM 1| If c¢ <is a colum of an S-matrix A and B 1is8 the equare matrix

formed by A's other colums then the system (B:c) 1is& strongly sign-solvable.

Now suppose, comversely, that B i8 an m X m matrix, the system (B:c) 1is
strongly sign-solvable, and Bx = c . Let A be the m x (m+ 1) matrix
whose (m+ 1)th colum 18 -c and whose Jth colum 1s (for 1 < j < m)
the jth colum of B or the negative of that colwm according as x4 >0

or x, <0. Them A 1i& an S-matrix.

In view of condition (11) of the next result, we may regard S as standing
for "simplex" as well as for "strongly sign-solvable". We could avoid (ii),
and establish the equivalence of (1) and (i1i) directly, by appealing to stand-
ard results on convex polyhedral cones [9, 11]. 1In fact, that was done by
Lancaster [20]. However, we want to include (ii) because it provides useful
geometric insight. A more geometrical formulation of (iii) is as follows:

for each open halfspace H in R” whose bounding hyperplane passes through

of A such that the cone Q(vj) i; con-

the origin there is a column v

h
tained in H .

THEOREM 2 Suppose that A is an m x (m + 1) matrix and VisesoaVig
are the colums of A . Then the following three conditions are equivalent:
(1) A s an S-matrix;
(11) for each choice of ¢, € Q("l)""’cml € Q(le)' the c-1 's
are the vertices of an m-eimplex whose interior contains the
origin;

(111) for each nonzero = ¢ g"‘ there eéxiste j such that ct

z>0

for all ¢ ¢ Q(vj).

e e
Ty




=5«

Proof. Suppose first that (i) holds and let cj € Q(vj) for
l1s3ism+1. Let B be the m x (m+ 1) matrix whose jth colum
is cj . Since the rank of B 15 at most m , there exists a nonzero
x such that Bx = 0 , By (1), each such x has exclusively negative
or exclusively positive coordinates, whence it follows readily that the
set {cl,...,cm+1} is affinely independent and the origin is a strictly

positive convex combination of the ¢ But that is the content of

J's .
(11) . Hence (1) implies (11), and the argument is easily reversed to
show (i1) implies (i).

If (111) fails there exists z ¥ 0 and there exist e, € Q(vl),...,
€t € Q(vh+1) such that c;z S0 for all j . Plainly that contradicts
(11), and hence (ii) implies (iii). Suppose, finally, that (iii) holds
and ¢, € Q(v,) for 1< jsm+ 1. Let K denote the convex hull of

3 b
the c,'s . It follows from (ii11) that K {ntersects every open halfspace

b

whose bounding hyperplane passes through the origin. But then the origin
must be interior to K , and since K has at most m+ 1 vertices it must
in fact be an m-simplex. That shows (iii) implies (i1) and completes the
proof of Theorem 1, [J

Now let us define a W-matrix as an m x n matrix A for which there
exists B ¢ Q(A) and nonzero x € R with Bx 20 (that is, each coor-
dinate of Bx 1is 2 0). An NW-matrix is one that is not a W-matrix. Con-
dition (1i1) above asserts the transpose At is an NW-matrix. In terms
of the notions defined in the next paragraph, W may be regarded as stand-

ing for "weakly satisfiable". The connection with satisfiability in propo-

sitional logic is clarified in Section 3.
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When x = (xl,...,xn) and y = (yl.....yn) are ordered n-tuples

of real numbers, we say that x hits {resp. satisfies) y if there

exists j such that xjyj ¥ O {resp. > 0>; and x misses y 1if x
does not hit y . Further x weakly satisfies y 1f x satisfies y
or x 1s nonzero but misses y . And x weakly eatisfies the m x n
matrix A 1f x weakly satisfies each row of A . Note that A is

weakly satisfiable if and only 1f A 1s a W-matrix.
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2. Construction of NW~-matrices

In constructing m x n NW-matrices, we are especially interested in
those for which m = n + 1 , since they are the transposes of S-matrices.
When m < n there are no m x n NW-matrices because each set of n points
tn R" 1lies in a closed halfspace whose bounding hyperplane passes through
the origin.

If A 1is an NW-matrix then so is every matrix obtained from A by
permuting rows, permuting columns, replacing columns by their negatives,
and changing the magnitudes (but not the signs) of individual entries.

These operations provide the natural equivalence relation for NW-matrices.
Since only sign-patterns are involved, each equivalence class may be repre-
sented by various arrays of the symbols —, 0 and +. We take as the canonical
representative the one which is lexicographically first when each matrix is
considered as the sequence formed by writing down its successive rows. The
lexicographic ordering is based on the ordering - < 0 < + of the sign-
symbols. Thus, for example, ¥ and + are the two 2 x 1 NW-matrices and
+ 1s the canonical representative because -+ precedes +- in the lexi-
cographic ordering. Fig. 1l shows the two canonical representatives of the

3 x 2 NW-matrices.

-+ > 0+
+0 +0

Fig. 1: The two canonical 3 x 2 NW-matrices and associated 2-simplices

R,

N o Y

C e ey

i
f
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By means of a computer search we have verified that there are precisely
ten equivalence classes of 4 x 3 NW-matrices. Their canonical representa-

tives are shown in Fig. 2.

--4 - -+ -0+ -0+ -0+
-+0 0+ 0 -+0 0+ - 0+ 0
00 +00 +00 +00 +00
--- --0 --0 --0 --0
00+ -0- -+0 -+0 00 -
0+0 0+ + 00 - 40 - 0+0
+00 +00 +0+ + 0+ +0+

Fig. 2: The ten canonical 4 x 3 NW-matrices

Each of the 3 x 2 classes can be constructed from the 2 x 1 class
in the manner shown in Fig. 3, and all but the next-to-last 4 x 3 class
arises froma 3 x 2 class in the same way. In Fig. 3, the new row has
all entries 0 except for a single nonzero s(- or +) in the new column
has s 1in the new row, ™s 1in some other position, and its remaining

entries are all 0 or s . (We agree that - 1is + and '+ is - .)

1 m
s A n
g 0 * L ] [ ) o l

Fig. 3: Forming an (m+ 1) x (n + 1) NW-matrix

from an m x n NW-matrix A

With m =m = k=2 and n, =n,= £ =1, the construction shown

in Fig. 4 yields a 4 x 3 NW-matrix that is equivalent to the mext-to-last

one of Fig. 2. 1In general, one starts froma k x £ NW-matrix C and
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mixn

£+ n, + ...+ nk) NW-matrix. Here the entries not in the small boxes

" NW-matrices Ai for 1 <1 £k to obtain an (ln:l + ...+ mk) x

L

.
e

are all 0O and for 1 <1 < k each of the m, Tows of Ci is identical

to the 1ith row of C . (It actually suffices to have each row of Ci

either zero or identical to the ith row of C , with at least one row of

the latter sort for each 1 .)

L n j

1 !

c[i

m, C 1 Al L
E

o2 9
m2 (‘.2 AZ 1
!

Fig. 4: Forming an NW-matrix from NW-matrices C, Al. ceny Ak

The constructions of Figs. 3-4 are very special cases of a general

construction based on partition-trees, which we now describe. A partitiom- i
tree for a set X is an ordered pair (T,Y) that satisfies the following I

conditions:




(a)

(b)

(c)
(d)

For

«10=-

T 1is a rooted tree in which each internal node has at least

two sons;

for each node 3 of T, Y(j) 1s a nonempty subset of X ;

for the root r of T, Y(r) = X ;

if 41 4is an internal node of T and S(i) 1s the set of all
sons of 1 in T then {Y(J) : § € S{(1)} 1s a partition of
Y(1) =-- that is, Y(j) n Y(j') = ® for each choice of distinct

3, J' e s(1), and v Y(3) = Y(1) .

jes(1)

our purposes, no generality is lost by adding the requirement that

X 1is a finite linearly ordered set and for each node j the set Y(j) 1s

an interval with respect to the ordering. Fig. 5 depicts a tree with root

r = 1 and node-set {1,...,8}, Fig. 6 an associated partition-tree for the

get X =

{1,...,11} .

Pig. 5: A tree with root 1 and node-set {1,...,8}

eI TN TILY - Tl
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1 1 1 ¥
2 z 2| 2 I
3 3 »[ 3 Y(7) 3 ]
4 4 4 3 4 ‘
5 |— s 5 5
6 6 6 Y(6) Y(8)
7 7 3 7
8 .8 8
9 9 ] ¥®
wl o] ¥ @
11 11
Y(1) Y(2)

Fig. 6: A partition-tree for {1,...,11}
associated with the tree of Fig. 5

THEOREM 3 Suppose that (T, Y) <& a partition-tree for the set {1,...,m}

’ i

1 1is the set of all internal nodes of T , and L 1is the set of all leaves

£ of T for which |Y(L)| 22 . Foreach 1 ¢e¢1 let Ai be an |S(1)| x ng

NW-matrix and for each £ ¢ L let A, bea |Y(L)| x np M-matrix. Then

the following construction yields an m x (tjsIuL nj) M-matrix B .’

(1) For each £ el let B have n, colums which, in the rows
eorresponding -to {1,...,m} ~ Y(&) {resp. Y(L) have all entries 1
0 Cresp. a copy of AL)‘

(11) Por each 1 e¢1 let Rl"“'RIS(i)I be the sets Y(j) for

JeS() . Let B have n, oolums which have all entries 0

i
in the rowe oorresponding to {1,...,m} ~ Y(1) and which satisfy

the following oondition for 1 s k S 8(1) : each row ocorresponding

Y

e
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to R has all entries 0 or is a copy of the kth row of Ai » and
there i8 (for each k ) at least one such copy.

Before proving Theorem 2, let us fllustrate its use in the construction
of NW-matrices. To obtain the construction of Fig. 3 from Theorem 2, let T
and Y be as in Fig. 7, let Al be + or + , and let Az be the A of

Fig. 3. There is no A, because [Y(3)| =1 .

1]
2 2
o | —9r .
. n
n Y(2)
- ~ET]
Y(1) Y(3)

Fig. 7: Obtaining Fig. 3's construction

as a gpecial case of Theorem 2

To obtain the construction of Fig. 4 from Theorem 2, let T consist of a
root 1 directly joined to nodes 2,...,k + 1 , let oj = Zi m, for
1sjsk, and let Y(1l) = {1""’°k}’ Y(2) = {1.....01}..... Y(k+1) =

+1,...,0,} . Let the A Az, cees A of Theorem 2 be respectively

{oy_) X 1’

the C, Ay <oes A of Fig. 4,

For one more illustration, let (T, Y) be as in Figs. 5-6 and let

-;’A -A7-:,A3.As--+. A8-0+ .

A, = A
6 +0 +0

1 2

Because of the freedom allowed in (11) in forming the columns of B cor-
responding to internal nodes of T , the number of 11 x 10 NW-matrices

that can be constructed in the manner of Theorem 2 with the specified T,

- —————

LT oy ol ey — o rwa———w——— - —

T
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Y and Ai'. is

O-D@-D@-n@2-1@2-1 @-1) «6,999,552.

In particular, if no use is made of the freedom allowed in (i1) (that is,
if each row corresponding to Rk is a copy of the kth row of Ai)‘ the

matrix of Fig. 8 1s obtained.

+ +
T+
] (=]
] [=]

]
]
0 O O O O
© O © O ©
[}

]

0O O ©O OO0 o © o o
[}
]

+
+ +

'
© o +

o 0o o + + +

o o o +

o o o ¢ +

o 0o oo © o

©O 0 0O 00O © o ©
© O 0O 0O © 0O 0O 4+ ©
O 0 0O 0o © 0o o0 o +

Fig. 8: An 11 x 10 NW-matrix constructed by the method of Theorem 2

Proof of Theorem 2. Suppose there exists a matrix B which is weakly
satisfiable even though it is generated by a partition-tree (T, Y) and
by Nw-matriées AJ in the manner of Theorem 2. Among all such B , con-
sider one for which the number of nodes of an associated T 4is a minimum.
With n = ijeIULnj » the number of columns of B , let x = (xl.....xn)
be an n~tuple that weakly satisfies B . Let H denote the set of all
nodes h of T such that x hits some row of B 1n the portion of B
that is generated by the node h and the NW-matrix Ah « Then B {is

nonempty, for all nonzero entries of B are generated in this way and no

column of B 4s zero. Among all members of H , choose ho closest to the
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root r of T 4in the sense that the path from r to h, in T

0

intersects H only at ho . Let T, be the subtree of T that is

0
rooted at ho and let Bo be the submatrix of B that is associated

with T Then Bo is weakly satisfied by the relevant portion of x ,

o .
and since Bo 1s also generated in the manner of Theorem 2 it follows

from the minimality of T that To « T and ho «=r, If r is a leaf
of T then B 1is the NW-matrix Ar and an immediate contradiction en-

Now suppose that the root r 1s an internal node of T , and let

x* denote the restriction of x to the column associated with r .
Since x* ¢ 0 and Ar is an MW-matrix, there exist r' and k such W
that (in the notation of (ii) of Theorem 2) r' ¢ S(r), 1 < k < |S(x)],
Rk = Y(r'), and x* hits but does not satisfy the kth row of Ar . !
Let T' denote the subtree of T that is rooted at r' and let B’ i
denote the submatrix of B that is formed from the rows of B correspond-
ing to Rk and the columns of B associated with nodes of T' . Let x'
denote the restriction of x to these columns. From the fact that x
h

weakly satisfies B while x* hits but does not satisfy the k" row

of A it can be deduced that x' weakly satisfies B' . But B' is

formed from T' and its associated Y(j)'s and A,'s 1in the manner of 1

b
Theorem 2, contradicting the minimality of T and completing the proof. 0

Gorman's 1964 conjecture [12] on the construction of S-matrices was

rephrased in [18, 23]. In our terms, it amounts to saying that 1f M 1is
the class of sll NW-matrices that have exactly one more row than columns, o

then each member of M 1s equivalent to one that is generated in the manner
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of Theorem 2 by a partition-tree (T, Y) and a collection of NW-matrices

‘3 such that T 4is binary (each internal node has exactly two sons) and
each AJ 18 + or + . We have not settled this conjecture, More gener-
ally, let P denote any one of the following three construction procedures:
(a) combining the method of Fig. 2 with that of FPig. 3; (b) restricting the
method of Theorem 2 to binary trees; (c) using the method of Theorem 2 with-
out restriction. Then we are unable to say whether, for an arbitrary member
M of M that has more than two rows, a member equivalent to M can be

generated by applying P to members of M that are smaller than M.
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3. The Recognition of W-matrices

For an m x n matrix A , weak satisfiability can be tested in
0(3nmn) steps by generating each of the kRl | possibilities for the
sign-pattern 6f NONZero y € R" and, as each one is generated, testing
to see whether it weakly satisfies each row of A . Similar procedures
were suggested by Lancaster [20, 21] for similar purposes. Although
these algorithms are finite and very easy to program, they are practical
only for small values of n . However, we show below that for general m

l/kj

and n , and even for the cases in which m = n + |n for an arbitrary

fixed k > 0 , the problem of recognizing weak satisfisbility is NP-complete
and hence algorithms requiring an exponential number of steps may be un-
avoidable.

It will be convenient, for the rest of this section, to change the
language from that of matrix theory to that of propositional logic. The

n columns of an m x n matrix A = (a correspond to n propositional

ij)

variables ul,...,un and the m rows of A correspond to clauses Cl,....
Cm in the literals ul,...,un,'il,...,l;, where ;3 stands for '*uj. The
matrix A 1is represented by a Boolean formula

B-c Ac A'.O Ac

1 2 m

in conjunctive normal form, where the clause Ci is the disjunction of

literals obtained from the 1th row of A as follows:

u, appears in C1 if and only 1f a,, > 0 ; u, appears in C1 if

] i) 3
and only if lij <0 ; 1if .1j e 0 then neither uj nor GB appears
in C, .

i
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An assigrment for the variables ul....,un is a function a : {ul,...,
“n} + (F, T} . A clause C, 1s satisfied by a 1f there exists J such
N j) =T or 33
F . The formula B 1s satisfied by a 1if each clause C

and a(u appears Iin C, and a(u,) =

i J
in B 1is satis-

that uy appears in C

i
fied by a . The satisfiability problem is that of recognizing formulas B

that are satisfiable. NP-completeness of this problem was established by

Cook [4], and that was the fundamental result from which the theory of NP-
completeness was developed by Karp [14] and others (see Garey and Johnson [10]
for an extensive survey). It seems very unlikely that the general satisfia-

bility problem admits a polynomially bounded algorithm.

A weak assignment for the variables Upjseeeou 18 a function a : {u, i
"""n} + {F, Z, T} (where Z may be regarded as standing for "zero") such

that for at least one j , a(uj) ¢ Z . A clause C1 18 weakly satisfied

by o if C, is satisfied by a or o misses C, in the sense that a(u ) =

i h]
4 - The formula B is i_
is weakly satisfied. The weak satisfia-

Z for all J such that uy or u appears in C

3

i
bility problem is that of recognizing formulas B that are weakly satisfiable.

weakly satisfied by o 1f each C

Plainly a matrix A is weakly satisfiable (that is, A is a W-matrix) if

and only 1f the corresponding Boolean formula B 1s weakly satisfiable.

Three examples serve to illustrate the above notions,

I x2 matrix Boolean Formula Properties ;
+0 (u)) A (ulv'iz) A (Elvﬁz) Satisfied by a(u) =T,
+ - u(uz) = F . Weakly satisfied
- - (but not satisfied) by u(ul) -

Z,a(uz)'F.

v
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3 x 2 matrix Boolean Formula Properties
+ 0 (ul) A (uz) A (El) Not satisfiable. Weakly satis-
0+ fied by u(ul) =2, a(uz) =T,
-0
+ + (u, v u,) A (31) v (52) Not weakly satisfiable.
-0

0 -
We now show how to reduce the satisfiability problem to the weak satis-

fiability problem.

THEOREM 4 Suppose that Cl”"'cm are clauses in the n variables Ugsenes

u and D D, are clauses in the 2n variables Ugseeesl 1o Vgreeos

n-1 AR
Voe1 where Di 18 obtained from Ci by replacing each occurrence of Gj
with vj . Form 4n additional clauses Ej, Fj’ Gj and Bj as follows,

where the subscript j ranges from 0 to m=-1 and j + 1 is reduced

modulo m :

Ej 18 u:l v vj ’ Fj 18 uj v vj ’
Gj is Ej Viugy Y Ve o Hj is Gj Vugg Y Ve

For the formula B = Cl Aees A Cm and the formula

i B'=D, A ... AD AE
m

1 A LR N AEnAF

A ..o AF_A
n

1 1

AO.. LN ]
G A Gn AH, A AH

1 1 n
the following three conditioms are equivalent: B is satisfiable; B' is
satisfiable; B' 1is weakly satisfiable.

Proof. If B 1s satisfied by an assignment a : {ul""’“n} + {F, T}
then B' 1is satisfied by the assignment a' : {ul""’"n' vl.....vn} +

{F, T} , where a'(uj) s a(u,) and a'(v,) = xu(u,) . Conversely, if a'

J 3 3
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is any assignment that satisfies B' then the restriction of a' to

{ul""’“n} satisfies B because from the satisfaction of E, and F

3 b

i1f follows that a' assigns complementary values to u, and vV

3 3

To complete the proof we show that if 8 : {ul,...,un, vl....,vn} -+
{F, Z, T} 1s a weak assignment that weakly satisfies B' then Z 1is
missing from the range of 8 , whence B 1s in fact an assignment that
satisfies B' .

By the definition of weak assignment, there exists k such that
B(uk) ¢2Z or B(vk) ¢ Z. For any such k , if B(uk) = T then B(Vk) = F

by Fk , while if B(uk) = F then B(vk) =T by E Similarly, 1if

k .

8(v,) = T then B(uk) =F by F_,while if g(v,) = F then B(w) = T

k
by Ek.
It remains only to show, by induction on j , that if B(uk) e {T, F}

then B(uk+j) ¢ {T, F} for all j . But if B(uk+j) = T then by Gk+j

one of uk+j+1 and vk+j+1 must be assigned T , whence the other is

assigned F by the observation of the preceding paragraph. And i1if B(uk+j) =

F then B(vk+J) = T , whence by Hk+j one of uk+j+1 and vk+j+1 must be
assigned T ; hence the other is assigned F . That completes the induction
and the proof. [

For each k > 0 , let the decision problem WSAT, be as follows:

k
Instance: A Boolean formula B in conjunctive normal form, involving

a total of n propositional variables and consisting of the conjunction of

n+ lnl/El disjunctive clauses;

Question: Is B weakly satisfiable?

e <
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THEOREM 5 For each k > O the problem WSAT, is NP-complete.

k
Proof. Plainly WSATk belongs to NP , so it suffices to describe
a polynomial reduction of SAT (the usual satisfiability problem) to
HSATk . Consider an instance of SAT that concerns a Boolean formula
B 1in conjunctive normal form, involving a total of n propositional
variables and consisting of the conjunction of m disjunctive clauses.
Let the variables be Ugseeesli g o introduce additional variables Vo,...,
Vn_1 , and let the formula B' be as in Theorem 4. Let r = (m + 2n + 1)k ,
introduce additional variables WoreeesWo g s and let B* be a not-weakly-
satisfiable formula consisting of the conjunction of r + 1 disjunctive
clauses in these variables (easily constructed with the aid of Theorem 1).
Finally, let B" denote the conjunction of B' and B* . Then B" con-~
sists of m+ 4n + r + 1 clauses and involves a total of 2n + r variables,
Since the inequality
m+n+r+l<@n+r)+ 2o+ n)lk
is equivalent to the valid inequality
(m + 2n + l)k <2n+r,
some of the clauses of B" can be repeated if necessary to produce an

instance B'"' of WSAT From Theorem 4 and the fact that B* 1is not

k L]
weakly satisfiable, it follows that B is satisfiable if and only if B'
is weakly satisfiable. 0O

As can be seen from the references in Garey and Johnson [10], there

are several other relatives of the satisfiability problem for which NP-

completeness has been established. See especially Schaefer [30].
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4. The Recognition of S-systems

As the term is used here, a cone is a nonempty subset C of R"

such that
0OéCc=C+C=10,~C .

Thus C omits the origin and is closed under vector addition and multi-
plication by positive scalars; in particular, C 1is convex. A cone is
polyhedral if it is defined by a finite system of linear inequalities.
An S-system is a sequence (Cl,...,Cm+1) of cones in R™ such that for
each m x (mt+l) matrix B whose kth column belongs to Ck (l1sk<sm+ 1)
and for each x ¢ Rm+1 with Bx = 0 , all coordinates of x are of the same
sign. Thus an m x (m+l) matrix with columns Vl""’vm+1 is an S-matrix
if and only if the sequence (Q(Vl),...,Q(Vm+l)) is an S-system.

Despite the NP-completeness result of Section 3 and the close relation-
ship between S-matrices and weak satisfiability, it can be determined in

polynomial time whether a given sequence of polyhedral cones is an S-system,

The algorithm is based on the following characterization.

THEOREM 6 If C,,...,C ,, are cones in R® and P, € C for each k,
then the following four eonditions are equivalent:
(1) (cl”"’cm-i-l) 18 an S-system;
> L
(11) for each choice of € € cl""’curH € Cm_1 , the ¢, 'e are the
vertices of an m~-simplex whose interior containg the origin;

(111) for each nongero z ¢ R® there exists k such that c°

z>0
for all c ¢ (:k 3

(1v) for each choice of distinet r , 8 ¢ {1,...,m1} the linear hull
of the eet {pk st T¥ k¥ 8} 18 a hyperplane that strietly sepa-

rates cr from C. .

T e e

s o M A0 st A i,

3
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Proof., Conditions (1)~(ii1) are merely the extensions, to general
cones, of the corresponding conditions of Theorem 2. The reasoning of
Theorem 2 applies here as well. Our algorithm is based on the equivalence
between (ii) and (iv), which will now be established.

If (1i) holds and . € Ck for each k then the points ¢ are
affinely independent and the affine hull of any m of them is a hyperplane
in R" that misses the origin. This implies that each m of the ck's
form a linearly independent set, whence the linear hull of any m - 1 of
them is a hyperplane through the origin. The remaining two ck's are on
opposite sides of that hyperplane, for the origin is interior to the convex
hull of the ck's . It follows that (ii) implies (iv).

Now suppose that (iv) holds, let T denote the set of all (mtl)-tuples
(cl,....cm+1) such that o € Ck for all k , and let T* denote the set
of all (m + l)-tuples in T such that for each choice of distinct r ,

s € {l,...,m+ 1} the linear hull of the set {ck :r¥k¢sl is a hyper-
plane that strictly separates Cr from Cs . Then (pl,...,pm+1) € T* by
(iv), and we claim that in fact I'* =T ., To prove this it suffices to show
that 1if (cl,...,cm+1) eT* 1 <sf<m+ 1, and D, is the set of all
d e Cl such that TI'* includes the (m + 1l)-tuple obtained from (cl,...,
cm+1) by replacing cp with d , then Dl =Cp .
For each e ¢ CZ and each r ¢ {l,...,m+ 1} ~ {£} 1let

X (e) = {e} v {e : k¢ (L, rl},
and for each 8 ¢ {1,...,m+ 1} ~ {r, s} 1let

xr.(e) = {e} v {ck t k¢ (L, x, 8)) .
The set xr(e) is linearly independent because the relevant ck'. are linearly

independent and their linear hull misses e . Hence the set xrs(e) is linearly
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independent and its linear hull is a hyperplane Hrs(e) through the
origin. To show e ¢ DZ it remains to show that Hrs(e) strictly
separates Cr from Cs . Since Cp € Dl » such separation does occur :

when e € ]0,~[c£ . Hence if the desired separation fails to occur ¥

for the e 1n question, there exists d ¢ ]cl,e[ ~ ]0,°[c£ such that !
Hrs(d) intersects Cr or Cs . We suppose without loss of generality
that Hrs(d) intersects Cr . Then there exists b ¢ Cr and there ;

exist scalars Ak such that i

b= Atd + zk&{z’r’s} Akck .
Also, since the linear hull of {ck t:r# k¢ s} is a hyperplane that

strictly separates Cr from Cs » there are scalars such that

Yk
= +
b= upee * Dbir,e) Ml -
Plainly AL <0 and up < 0 . Since the set Xr(b) is linearly inde- i
pendent it follows from the two equations that d € ]U,“[cz , a contra-
diction showing that Dl - Cl + It follows, then, that T* = T

Now consider an arbitrary (m + l)-tuple (cl""’cm+l) € I = T*

and an arbitrary choice of scalars Yy such that ZT+]chk =0 . If

there exist r and s such that Yy <0< Yg then all Yk's are 0O ,

as follows from the equation

YeCs = (Y )ep - Zrv‘khykck
in conjunction with the fact that the linear hull of {<:k tré¢ke¢¥s) is F
a hyperplane that strictly separates c, from Cg * This condition on the
'Yk'l implies the Ck'l are affinely independent and are in fact the ver- -

tices of an m-simplex whose interior contains the origin. Hence (iv) implies

(1. D
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The following thecrem applies to arbitrary cones but may be difficult

to implement if the cones are not polyhedral.

THEOREM 7 The following procedure decides correctly whether a given sequence

(Cl""'cm+l) of eones in R® i8 an S-gystem:

(1) Select points P € Cl""’pm+1 € Cm+1 .
m

(2) Decide whether there exists a nonmzero z ¢ R s8such that pktz 20
for all k . If so, stop; (Cl""’cm+1) 18 not an S-system.

(3) For each r,s with 1sr<ss<m+ 1, form the linear hull H
of {pk t: r ¥ k¢¥s). Decide whether H intersects c and
whether H intersects c, - If a nonempty intersection is

found, stop; (Cl,..., ) 4e not an S-system .,

Cot1

(4) If C_n L ¢ = C,nH_ for all r <s then (CyseeesC )

mtl
18 an S-gystem .

Proof. If there exists a z as in (2) then {pl,...,pm+1} lies in a
closed halfspace whose bounding hyperplane passes through the origin. Hence
the origin is not interior to the convex hull of the pk's and (Cl,...,Cm+1)
is not an S-system. If no such 2z exists then each m of the points Pyseees
are linearly independent and each Hrs is a hyperplane, If Hrs inter-

Pl

sects Cr or Cs’ we see as in the proof of Theorem 6 that (Cl,...,C ) 1is

o+l
not an S-system. But if, in step (3), the hyperplane Hrs wmisses both C.

and C' then it strictly separates them; for otherwise Cr and C8 lie to-
gether in a closed halfspace bounded by Brs , and 8 £z would have been found

(and the computation halted) in step (2). Thus if the computation progresses

past step (3), it follows from Theorem 6 that (Cl....,CE*l) 46 an S-gystem. [

|
|
|




-25-

When the cones Ck are polyhedral, the selection of the pk's
in step (1) and the consistency tests in steps (2) and (3) can be car-
ried out by means of various linear programming methods. In particular,
Phase I of Dantzig's simplex method [5] is applicable, as in the recent
Shor-Khachian method [15, 31]). In view of numerous reports of computa-
tional experience with these two methods [3, 5, 6, 25, 32], we may say
that each leads to a "good" algorithm for recognizing polyhedral S-systems.
The recognition algorithm based on the simplek method is good in the sense
that it is usually very efficient in practice, even though its worst-case
behavior is not polynomially bounded [16]. The recognition algorithm based
on the Shor-Khachian method is good in the sense that it is polynomially
bounded (see Theorem 8), even though it 1is usually very inefficient in
practice. It would be very nice, for the recognition of polyhedral S-systems
as well as for solving linear programming problems, to have an algorithm that

is good in both senses!

THEOREM 8 By using the procedure of Theorem 71 in conjunction with the
Ruseian method for linear inequalities, the problem of recognizing polyhedral
S-systeme can be solved in polynomial time and space on a deterministic Tur-
ing machine. Specifically, when each of the cones CraeeesCpyy in R® 4is
giﬁen by a system of linear inequalities with integer coefficients and E
is the length of the binary encoding of the input data, the algorithm decides
in time O(n’E) whether (Cju...,Ci,,) is an S-syatem.

Proof. It follows from Khachian's analysis [15) of the Shor-Khachian
algorithm [15, 31] that a polynomially bounded algorithm for recognizing

polyhedral S-systems is obtained if one implements the procedure of Theorem 7

PR
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by suitable use of the SK-algorithm to find the points Py and to make
the required consistency tests. Khachian's paper [15] is an extended
abstract, without proofs, but proofs and various improvements have
appeared in technical reports issued subsequently by many operations
researchers, computer scientists and mathematicians. We mention G&cs and
Lovdsz [8], Aspvall and Stone [1], and especially Padberg and Rao [26, 27]
who have an improvement of the SK-algorithm that they call the Russian
method for linear inequalities. Our discussion is based on that of Padberg J
and Rao.

In order to handle both strong and weak linear inequalities, let us

assume that for each k there are finite sets Yk and Zk of nonzero

lattice points in R" such that

C, = {x ¢ R : ytx >0 for all yeY and zfx 2 0 for

all z ¢ Zk} .
The set Zk may be empty, but we may assume Yk is nonempty for otherwise

0e€ Ck and (Cl....,Cn+1) is not an S-system. Equality constraints wtx =0

are handled, as usual, by including both w and -w in the set 2k « In
particular, 1f C, 1is of the form Q(Vk) , {ul,...,um} is the standard basis

for R , and £ of Vk's coordinates are O , then Yk includes u, or

~u, for m - £ wvalues of i and Zk includes both u, and ~u, for the

remaining £ values of 1 .

k o

For each k let n = IYkI + |zk| » let b be the point of R

vhose first lYkl coordinates are ] and last |Zkl coordinates are 0 ,
let Ak = (u:j) be the n *m matrix wvhose first IYkl rows are the




e
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vectors yt for y ¢ Yk and last leI rows are the vectors z° N

for z € Zk , and let

m k k
D {x e R .Abe}CCk.

Tl skt

Note that a linear subspace of R® intersects C,_ if and only if it

k

intersects Dk . Thus it is permissible, in following the procedure

described in Theorem 7, to work with the Dk's rather than the ck's .

If we adopt the special convention that 10320 = 0 , the length of

Pl s unAE Sk S O

the binary encoding of the description of D, (or of Ck ) may be taken

k
as
Ek =1+ Llogzmu + Lk . i
where f
=2+ llog,|Y, |J + Llog,n J + + an Em Llog |ak B] |
L 2! ¥ Mt I L) lyey 2/8441d - l
Here |Y,| denotes cardinality and Iak | denotes absolute value. We f

k ij i

assume that for each integer x , 1 + logZLxJ bits are used to represent
|x| and an additional bit represents the sign of x 1if the problem's
formulation does not automatically require x > 0 (as it does when x is
m or mn ). The length of the encoding of the description of the system

(Cl.....Cm+1) is defined as
‘ : m+l
E=1+llogml+ ] L . ]

It 18 easy to quibble in minor ways with these definitions of the Ek'l

snd of E , but such quibbles do not affect the validity of our theorem.
Let

F =1+ Llogsz +8

wvhere A, 1s the maximum of the absolute values of the determinants of

k
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the square submatrices of the matrix [Ak, ka , and let
D= fxeD ¢ Ixl sk 2% forall 1}
k k © %! % 2m or & g

It follows from the discussion of Padberg and Rao [26, 27] that l-‘k < Ek .

nonemptiness of D, implies nonemptiness of D' , and the Russian method
k k

yields a point P € Dl" in time (and space) O(m3Fk) . Thus the complexity

of step (1) in the procedure of Theorem 7 is
3 omtl 3
O(m Zk-l Fk) < 0(m’E) .

With p, e D! for 1 sk sm+ 1, the consistency problem of step (2)
k k

admits a binary encoding of length O(E) and hence step (2) is handled in
time 0(m3F.) by the Russian method.

To form the linear hull H__ of {110k :r ¢ k¥s}, as required by
step (3), let Mrs be the (m - 1) xm matrix whose columns are the pk's
for r ¥ k ¥ g ; then use the Russian method (or elementary columm operations)
t

such that q s M s~ 0 and all coordinates of

to find a nonzero L R®

q,, Aare less than E 1in absolute value. This can be done in time 0(m3£) R

and then

m ot
H_ {x eR P q X 0} .

Testing whether H“ intersects Cr or C‘ is also of complexity O(msl-:)
1f the Russian method is used. Since there are m(m + 1)/2 pairs (r, s)
to contend with, the overall complexity of step (3) and of the entire algo-

rithm 1s O(IIISE) . D
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5. Open Problems

If each (n + 1) x n NW-matrix can be generated from smaller ones by
the method of Theorem 2, then each S-matrix has at least one row in which

there are at most two nonzero entries. Gorman has conjectured that this is

so and can be used as the basis of a fast algorithm for recognizing S-matrices.

Let &(m, n) denote the number of equivalence classes of m X n NW-
matrices. What can be said about the asymptotic behavior of the function ¢,
or about its values for small (m, n) ? There is special interest in
o(n + 1, n) , the number of equivalence classes of n x (n + 1) S-matrices.
We have seen that ¢(2,1) = 1, $(3,2) = 2, ¢(4,3) = 10 ., What is ¢(5,4) ?

Consider the problem of recognizing whether a given m X n matrix is
an NW-matrix. As we have seen, this problem can be solved in polynomial time
when m = n + 1 but is NP-complete when m = n + LnI/EJ for an arbitrary
fixed k > 0 . What happens wvhen m=n + k for a fixed k > 1 ?

For each n let h(n) denote the smallest integer r that has the
following property: whenever a Boolean formula is in conjunctive normal
form, involves a total of n propositional variables, and is not weakly
satisfiable, then some subformula, consisting of the conjunction of h(n)
or fewer of the clauses of the original formula, is aot weakly satisfiable.
It is easy to see that 2an S h(n) s 3" - 1 . Plainly h(1) = 2 and it can
be verified that h(2) = 4 . Is h(n) always equal to 2n ?

For each x € R® ~ {0} , let U(x) denote the set of all unit vectors
u € R® such that u weakly satisfies c¢ . Since U(x) depends only Q(x) ,
there are only 3" - 1 sets of the form U(x) for x e R® ~ {0} . For
example, vhen n = 2 there are four sets like each of the samples shown in

Fig. 9.

e e
L S
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TxX

Yy NN
‘./U(x)

Fig. 9: The two types of sets U(x) for x ¢ R2 ~ {0}

Let us use the term Un-set to denote a set of the form U(x) for
x ¢ R" ~ {0} . Then h(n) is the smallest k such that whenever each
k wmembers of a family of Un-sets have a common point, the entire
family has nonempty intersection. Thus h(n) 1s a Helly number in the
sense of Danzer, Grunbaum and Klee [7]. It seems possible that methods
similar to those of Grunbaum and Motzkin [13] would be useful in deter-
mining h(n) .

For each cone K in R" , let W(K) denote the set of all
w e R® ~ {0} such that w'k 20 for each k € K. For each family
K of cones, let W(K) = {W(K) : K ¢ K} and let H(K) denote the Helly
number of W(K) . Then h(n) 4s H({Q(x) : x € R® ~ {0}) . What can be

said about H(K) for other interesting choices of K ?
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